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Observation of mechanical bound states in the
continuum in an optomechanical microresonator
Yue Yu 1, Xiang Xi 1 and Xiankai Sun 1✉

Abstract
Bound states in the continuum (BICs) are a type of waves that are perfectly confined in the continuous spectrum of
radiating waves without interaction with them. Here, we fabricated, with CMOS-compatible processes on a silicon
chip, a wheel-shaped optomechanical microresonator, in which we experimentally observed the BIC in the
micromechanical domain. The BIC results from destructive interference between two dissipative mechanical modes of
the microresonator under broken azimuthal symmetry. Such BICs can be obtained from devices with large and robust
supporting structures with variable sizes, which substantially reduces fabrication difficulty and allows for versatile
application environments. Our results open a new way of phonon trapping in micromechanical structures with
dissipation channels, and produce long phonon lifetimes that are desired in many mechanical applications such as
mechanical oscillators, sensors, and quantum information processors.

Introduction
Micro- and nanomechanical resonators, which possess a

very small mass and can be strongly coupled to light and
matter, have been explored for precision metrology
applications like mass and force sensing1 and employed
for investigating macroscopic quantum physics2,3. Redu-
cing mechanical dissipation is crucial to these applications
since it allows enhanced mechanical fields with long
coherence time and thus leads to improved performance.
The conventional wisdom of reducing the dissipation loss
relies on separating their eigenmodes from the continuum
of lossy modes by constructing deep energy potentials
with different materials or periodic structures4,5. For
another type of nonperiodic individual resonators, where
the bandgap shielding strategy cannot be applied, redu-
cing the dissipation loss relies on minimizing their sup-
porting structures6,7, which increases device fabrication
difficulty and sets restrictions on their application areas.
For example, devices based on such delicate mechanical
structures cannot be used repeatedly for fluid-based

applications, because they would likely fail when the
ambient environment changes from a liquid to a gas.
Bound states in the continuum (BICs) refer to a type of

eigenstates with infinite lifetime yet spectrally overlapping
with lossy states in the continuum8. Originally introduced
to quantum mechanics, the concept of BICs has been
extended to optical9–14, acoustic15–18, and mechanical19,20

domains, and enabled many unprecedented applications
such as low-threshold lasing21–23, ultrasensitive sensing24,
and vortex beam generation25. To date, most experi-
mental demonstrations of BICs in optics and mechanics
are based on periodic structures with certain sym-
metry26–30. These devices usually have a large footprint
with a large modal volume or effective mass, which sets
limitations to their application scenarios. In contrast to
devices based on periodic structures, nonperiodic indivi-
dual optical and mechanical resonators can more easily
have confined fields with strong modal intensity at the
micro/nanoscale, leading to a series of applications in
precision metrology as well as studies of macroscopic
quantum physics. BICs in individual optical31,32 and
acoustic33–36 resonators have been demonstrated. How-
ever, experimental demonstration of BICs in an individual
mechanical resonator remains elusive.
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Here, we experimentally demonstrated mechanical BICs
in an optomechanical microresonator. By breaking the
azimuthal symmetry, we introduced coupling between a
radial-contour mode and a wine-glass mode of a wheel-
shaped structure to obtain destructive interference
between energy dissipation of the two modes, which
produces a mechanical BIC under the Friedrich–Wintgen
condition37. The mechanical BIC was experimentally
confirmed by optomechanical measurement of the devices
in vacuum. In contrast to conventional BICs requiring
certain symmetry, the demonstrated mechanical BICs
represent a new paradigm for constructing high-Q
micromechanical resonators through symmetry break-
ing38. In addition, the low-loss mechanical BIC has high
tolerance on the supporting rods’ width from hundreds of
nanometers to several micrometers.

Results
To construct BICs in an individual mechanical resonator,

suppose we have a resonator supporting two dissipative
modes coupled with each other, as shown in Fig. 1a. Such a
system can be described by a Hamiltonian

H ¼ ω1 � jγ1 κ � j
ffiffiffiffiffiffiffiffiffiffi
γ1γ2

p
κ � j

ffiffiffiffiffiffiffiffiffiffi
γ1γ2

p
ω2 � jγ2

 !

ð1Þ

where ω1 (γ1) and ω2 (γ2) are the resonant frequencies
(dissipation rates) of the two modes. The two modes are
coupled with each other with a coupling coefficient κ,
which results in an anticrossing of these two modes. At
this anticrossing point, when the Friedrich–Wintgen
condition

κ γ1 � γ2ð Þ¼ ffiffiffiffiffiffiffiffiffiffi
γ1γ2

p
ω1 � ω2ð Þ ð2Þ

is satisfied13,39, the complex resonant frequencies become
(see Supplementary Information, Section S1)

Ω1 ¼ ω1 þ ω2

2
þ κ γ1 þ γ2ð Þ

2
ffiffiffiffiffiffiffiffiffiffi
γ1γ2

p � j γ1 þ γ2ð Þ ð3Þ

Ω2 ¼ ω1 þ ω2

2
� κ γ1 þ γ2ð Þ

2
ffiffiffiffiffiffiffiffiffiffi
γ1γ2

p ð4Þ

As shown in Eq. (4), Ω2 has a vanishing imaginary part,
which means that this hybrid mode experiences zero
dissipation loss and thus can be a BIC. In this system,
when one of the two hybrid modes becomes lossless, the
Friedrich–Wintgen condition is also satisfied (See Sup-
plementary Information, Section S2). Therefore, one can
verify a Friedrich–Wintgen BIC by measuring the
dissipation loss of the two hybrid modes of the system.
First, we consider a ring-shaped thin-plate micro-

mechanical resonator as shown in Fig. 1b. It is made in
220-nm-thick silicon and has an inner radius r and an outer

radius R (r, R ≫ 220 nm). Such resonators support two
types of in-plane mechanical modes: radial-contour modes
and wine-glass modes. Since these two types of modes have
different dependence on r, fixing R= 26.1 µm and varying r
lead to a crossing of resonant frequencies of the funda-
mental radial-contour mode (mode A in Fig. 1b) and the
4th-order wine-glass mode (mode B in Fig. 1b). In a ring-
shaped resonator with perfect azimuthal symmetry, mode
A and mode B are orthogonal to each other without modal
coupling. Therefore, the Friedrich–Wintgen condition in
Eq. (2) for BICs cannot be satisfied. To introduce modal
coupling for satisfying the Friedrich–Wintgen condition,
we break the azimuthal symmetry of the ring-shaped
resonator by modifying its inner boundary to an ellipse,
with semi-major and semi-minor axes being respectively rx
and ry, as shown in Fig. 1c. Figure 1c also plots the simu-
lated modal frequencies of the modified structure as a
function of rx with fixed ry= 18.7 μm and R= 26.1 μm,
where an anticrossing occurs near rx= 20.6 μm indicating
the coupling between the two mechanical modes. At the
anticrossing point, the energy exchange between the ori-
ginal mode A and mode B leads to two hybrid modes,
namely mode A' and mode B', as shown in Fig. 1d. Note
that although the structure in Fig. 1c can have the required
coupling between different modes which can support a
BIC, a realistic device must also include supporting struc-
tures that are connected to the substrate, which act as
the dissipation channel for both mechanical modes. Com-
pared with the original modes A and B, the hybrid modes
A' and B' have larger regions where the modal displacement
is near zero (Fig. 1d). Therefore, by attaching the sup-
porting structures to these regions, it is possible to reduce
energy dissipation of the ring-shaped mechanical resonator
to the substrate.
Next, we investigate a realistic structure in which two

supporting rods are added to the azimuthal-symmetry-
broken ring-shaped resonator making a wheel-shaped
resonator as shown in Fig. 2a, b. We need to engineer this
structure and analyze the modal coupling to satisfy the
Friedrich–Wintgen condition [Eq. (2)] for constructing a
mechanical BIC. Figure 2a is a three-dimensional view of
the entire device structure where the wheel-shaped
resonator is seated on a silicon oxide (SiO2) pedestal on
the substrate. Figure 2b shows the top and side views of
the entire device, where the wheel-shaped silicon micro-
mechanical resonator, the SiO2 pedestal, and the substrate
are marked in blue, black, and gray, respectively. The
additional two parameters for the wheel-shaped resonator
d and rs are the supporting rods’ width and the center disk
radius, respectively. To investigate the influence of the
supporting rods on the modal coupling, we simulated the
frequencies and mechanical Q factors of mode A' and
mode B' as a function of the semi-major axis rx for dif-
ferent rod widths d, with the results shown in Fig. 2c, d.
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The other geometric parameters are fixed at ry= 18.7 μm,
R= 26.1 μm, and rs= 14.7 μm. The insets in Fig. 2c show
the displacement profiles of the corresponding mechan-
ical modes. It can be found that an anticrossing in the
modal frequencies (Fig. 2c) and a drastic variation in the
mechanical Q factor of mode A' (Fig. 2d) occur simulta-
neously near rx= 20.8 μm, despite a large variation of d
from 0.5 to 5 μm. These behaviors indicate that mode A'
becomes a Friedrich–Wintgen quasi-BIC37. Note that the
high-Q Friedrich–Wintgen BIC can be obtained from the
wheel-shaped resonator with d as large as several micro-
meters. One reason is that the hybrid mode A' has a larger
region of near-zero displacement than the original
uncoupled wine-glass mode (mode B). Actually, we
simulated a series of structures with d varying from 0.5 to
8 μm and collected the rx value and mechanical Q factor
when the BIC is achieved (marked by the red circles in
Fig. 2d), with the results plotted in Fig. 2e, f, respectively.
Figure 2f shows that the simulated mechanical Q factor of

the BIC can maintain above 108 in such a wide range of d
from 0.5 to 8 μm (See Supplementary Information, Section
S5), demonstrating excellent robustness against variations
of the width of the dissipation channel. Compared with
conventional mechanical systems which rely on minimized
supporting rods6,7 or surrounding phononic bandgap
structures5 for reducing the clamping loss and achieving
high mechanical Q factors, the Friedrich–Wintgen BIC
can exist in mechanical resonators with simply designed
sturdy supporting structures, which substantially alleviate
device fabrication difficulty, facilitate thermalization and
heat dissipation, and enable device applications in versatile
environments.
To measure the mechanical BIC, we fabricated the

wheel-shaped optomechanical microresonators on a
silicon-on-insulator wafer and used optomechanical
transduction for detecting their mechanical Q factors.
Under the guidance of theoretical analysis and numerical
simulation, we varied the parameter rx for different
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Fig. 1 Construction of mechanical BIC in a micromechanical resonator based on modal coupling. a Schematic of dispersive and dissipative
coupling between two eigenmodes of a resonating system. b Simulated frequencies of mode A (dark red rectangles) and mode B (violet dots) of a
ring-shaped silicon micromechanical resonator with azimuthal symmetry as a function of the inner radius r. The resonator has a thickness h= 220 nm
and outer radius R= 26.1 μm. Modes A and B are the fundamental radial-contour mode and the 4th-order wine-glass mode, respectively. c Simulated
frequencies of mode A’ (orange rectangles) and mode B' (purple dots) of a ring-shaped resonator with broken azimuthal symmetry as a function of
semi-major axis of the inner boundary rx. The resonator has a thickness h= 220 nm, outer radius R= 26.1 μm, and semi-minor axis of the inner
boundary ry= 18.7 μm. d Generation of the hybrid modes A’ and B’ from coupling of the original modes A and B at the anticrossing point
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resonator devices while keeping the following structural
parameters fixed: d= 5 μm, rs= 14.7 μm, ry= 18.7 μm,
and R= 26.1 μm. Figure 3a shows scanning electron
microscope images of a fabricated device. Note that the
wheel-shaped optomechanical microresonator also sup-
ports optical whispering-gallery modes circulating around
its outer periphery, which were employed to detect the
thermomechanical vibration of the resonator via opto-
mechanical transduction. We also fabricated a bus
waveguide in close proximity of the resonator for coupling
light into and out of the resonator. The inset of Fig. 3a is a

close-up showing the details in the coupling region of the
resonator and bus waveguide. Figure 3b shows the
experimental setup for device characterization. Figure 3c
plots a measured optical transmission spectrum of the
resonator, where the dips correspond to the optical
whispering-gallery modes in different orders. Figure 3d is
a close-up of a dip at ~1558.4 nm, which shows that the
loaded optical Q factor is 2.3 × 105.
To experimentally verify the mechanical BIC, we mea-

sured the wheel-shaped optomechanical microresonators
in a vacuum chamber, which could provide an ambient
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pressure from 1.0 × 105 to 6.0 × 10−3 Pa for the devices.
Figure 4a plots the simulated and measured frequencies of
modes A' and B' (modal profiles in Fig. 4a insets) for
devices with different rx. The simulated results are
extracted directly from the rightmost plot of Fig. 2c. The
measured results agree well with the simulated results,
which confirms the existence of the two modes. Figure 4b
plots the mechanical Q factors of modes A' and B' as a
function of rx measured at the ambient pressure of
6.0 × 10−3 Pa. Mode A' achieves its maximal mechanical
Q factor of 9453 at rx= 20.8 μm, which agrees with the
simulated results in Fig. 2d. Therefore, we confirm
attainment of the mechanical BIC in our fabricated
optomechanical microresonators. Figure 4c shows the
measured displacement noise power spectral density of
modes A' and B' at rx= 20.8 μm where the BIC is
achieved. The Lorentzian fitting of these spectra provides
the mechanical Q factor of 9453 for mode A' and 882 for
mode B'. The measured mechanical Q factor of mode A' at
the BIC point is lower than the simulated value in Fig. 2d.

It should be noted that the strategy of engineering a
Friedrich–Wintgen BIC can only be used for eliminating
the clamping loss. The other loss mechanisms such as air
damping loss and material loss cannot be reduced effec-
tively by the structural engineering and modal con-
trol40,41. Next, we investigated the residual loss in our BIC
device (rx= 20.8 μm) where the clamping loss has been
completely eliminated. To this end, we measured its
mechanical Q factor under different ambient pressures in
the vacuum chamber, with the results shown in Fig. 4d.
The mechanical Q factors for devices with other rx values
at different ambient pressures can be found in Supple-
mentary Information, Section S6. Figure 4d shows that the
mechanical Q factor decreases as the ambient pressure
increases and this effect becomes more pronounced when
the ambient pressure is above 1 Pa, which indicates that
air damping loss was the main loss mechanism. Since
material loss usually depends on temperature and main-
tains constant at a given temperature, e.g., room tem-
perature in our experiment, we can express the

b

c d

a

Wavelength (nm)

Vacuum chamber Signal analyzer

PD

EDFA

DUT

VOA

TSL

FPC

1530 1540 1550 1560 1570
–36

–33

–30

–27

–24

T
ra

ns
m

is
si

on
 (

dB
)

1558.3 1558.4 1558.5
–9

0

N
or

m
al

iz
ed

 tr
an

sm
is

si
on

 (
dB

)
Wavelength (nm)

Loaded Q  = 2.3 × 105

–6

–3

10 μm 5 μm

Light in Light out

Fig. 3 Device fabrication and experimental characterization. a Scanning electron microscope image of a fabricated silicon optomechanical
microresonator. The nearby bus waveguide is used for coupling light into the resonator for optical measurement of its mechanical modes. The inset
is a close-up showing the details in the coupling region of the resonator and bus waveguide. b Experimental setup. TSL, tunable semiconductor laser;
FPC, fiber polarization controller; VOA, variable optical attenuator; DUT, device under test; EDFA, erbium-doped fiber amplifier; PD, photodetector.
c Measured optical transmission spectrum of the device in (a). d Zoomed-in optical transmission spectrum showing an optical resonance with
Lorentzian-fitted optical Q factor

Yu et al. Light: Science & Applications          (2022) 11:328 Page 5 of 8



mechanical Q factor as

Q�1 ¼ Q�1
0 þ Q�1

ext ¼ Q�1
0 þ C�1P ð5Þ

where Q0, Qext, and P are the intrinsic Q factor, extrinsic
Q factor, and the ambient pressure, respectively. C is a
proportionality constant defined as ρhf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π3RT=8M

p
,

where ρ, h, f, R, T, and M are the material mass density,
resonator thickness, mechanical frequency, ideal gas
constant, temperature, and molar mass of air, respec-
tively42. With ρ= 2329 kgm−3, h= 220 nm, f= 57MHz,
R= 8.31 J K−1 mol−1, T= 300 K, and M= 28.97 g mol−1,
C has the theoretically calculated value of 1.69 × 107 Pa.
Note that the above expression for the mechanical Q
factor in Eq. (5) applies only to a relatively low ambient
pressure where the free-molecular-flow approximation is

valid. Under a high pressure, the air-damping-dominated
Qext follows a P−1/2 dependence42. Therefore, we fitted
the experimental results at the ambient pressure below
104 Pa based on Eq. (5), obtaining the orange curve shown
in Fig. 4d with the fitted C being 1.49 × 107 Pa, which
agrees well with the theoretically calculated value.

Discussion
In summary, we experimentally realized a BIC in an

individual optomechanical microresonator, which pro-
vides a new strategy of phonon trapping in micro-
mechanical structures with dissipation channels. By
breaking the azimuthal symmetry, we introduced cou-
pling between two dissipative mechanical modes of a
wheel-shaped microresonator for making destructive
interference between the dissipation channels. As a result,

a b
F

re
qu

en
cy

 (
M

H
z)

rx (μm)

19 20 21 22 23
50

60

70

80

90

100

dc

19 20 21 22 23

0.4

0.6

0.8

1.0

 Mode A′

 
Mode B′

M
ec

ha
ni

ca
l Q

 fa
ct

or

×104

0.2

0

rx (μm)

83.0 83.5 84.0
1.0

1.2

1.4

1.6

1

5

9

13

17

21

57.00 57.04 57.08

Frequency (MHz)

Simulated
Measured

 

Mode A′ Mode B′

Mode A′

Mode B′

rx = 20.8 μm

D
is

pl
ac

em
en

t n
oi

se
 P

S
D

 (
10

–3
0  m

2 /H
z)

D
isplacem

ent noise P
S

D
 (10

–30 m
2/H

z)

10–3 10–1 103 105
103

104

M
ec

ha
ni

ca
l Q

 fa
ct

or

Ambient pressure (Pa)

101

rx = 20.8 μm

Fig. 4 Experimental demonstration of mechanical BIC in an optomechanical microresonator. a Simulated and measured frequencies of modes
A' and B' as a function of rx. b Measured mechanical Q factors of modes A' and B' as a function of rx under the ambient pressure of 6.0 × 10−3 Pa.
c Measured displacement noise power spectral density (PSD) of modes A' and B' from the device with rx= 20.8 μm under the ambient pressure of
6.0 × 10−3 Pa. The blue (green) open circles represent the measured data points for mode A' (B'), and the orange (purple) line is the corresponding
Lorentzian fit. d Measured mechanical Q factor of mode A' from the device with rx= 20.8 μm as a function of the ambient pressure. The data
collected below (above) 104 Pa are marked in blue dots (open circles). The orange curve plots a theoretical fit for the blue data points (below 104 Pa)
based on Eq. (5)

Yu et al. Light: Science & Applications          (2022) 11:328 Page 6 of 8



we obtained a Friedrich–Wintgen BIC with zero clamping
loss, and achieved a mechanical Q factor of ~104 in the
very high frequency band at room temperature from a
wheel-shaped optomechanical microresonator with its
supporting rods’ width as large as 5 μm. To obtain high-Q
resonances in individual micromechanical resonators,
the conventional wisdom relies on minimizing the size of
the supporting structures which renders the fabricated
mechanical device fragile. Defying the conventional wis-
dom, our strategy applies to robust mechanical structures,
which not only substantially reduces device fabrication
difficulty but also enables device operation in versatile
environments for broader application areas. Our experi-
mental results open a new way of obtaining high-Qmicro-
and nanomechanical resonators, which will inspire plenty
of applications in interdisciplinary research areas such as
electromechanics, optomechanics, and quantum physics.

Materials and methods
Simulation
A finite-element method was adopted to simulate the

mechanical modes in commercial software COMSOL.
The following parameters were used in the simulation
model: silicon’s Young’s modulus E= 150 GPa, Poisson’s
ratio ν= 0.28, and mass density ρ= 2329 kgm−3; silicon
oxide’s Young’s modulus E= 70 GPa, Poisson’s ratio
ν= 0.17, and mass density ρ= 2200 kg m−3. A 2-μm-thick
perfectly matched layer was placed at the bottom of the
substrate for analysis of the mechanical loss. More details
of mechanical simulation can be found in Supplementary
Information, Section S4.

Fabrication
The devices were fabricated with CMOS-compatible

processes on a standard silicon-on-insulator wafer, where
the thicknesses of the top silicon device layer and the
buried silicon oxide layer are 220 nm and 3 μm, respec-
tively. The patterns of the optomechanical micro-
resonator, bus waveguide, and grating couplers (not
shown in Fig. 3) were defined by high-resolution electron-
beam lithography in an electron-beam resist (ZEP520A).
Then, the patterns in the electron-beam resist were
transferred to the top silicon device layer by plasma dry
etching with SF6/C4F8 chemistry. Next, a step of photo-
lithography was performed to define the areas to be
exposed for wet etching. After that, the optomechanical
microresonators were released from the substrate by wet
etching in a buffered oxide etchant. Finally, the devices
were dried in a critical point dryer to prevent stiction.

Measurement
The fabricated devices were placed inside a vacuum

chamber, in which the pressure could be varied from
1.01 × 105 to 6.0 × 10−3 Pa. A laser beam from a tunable

semiconductor laser (TSL) was sent through a fiber
polarization controller (FPC) and a variable optical
attenuator (VOA) before it was coupled into the bus
waveguide of the device under test (DUT) via an input
grating coupler. The laser beam was further coupled into
the optomechanical microresonator to detect its ther-
momechanical vibration via optomechanical transduction
(see details in Supplementary Information, Section S3).
To obtain the intrinsic mechanical Q factor, the laser
beam was attenuated by using the VOA such that the
dynamic backaction from optomechanical interaction was
negligible in the resonator (See Supplementary Informa-
tion, Section S6). The light coupled out of the DUT was
first amplified by a low-noise erbium-doped fiber ampli-
fier (EDFA) and then collected by a photodetector (PD).
Then, the optical signal carrying the mechanical modal
information of the optomechanical microresonator was
converted into the electrical domain. The converted
electrical signal was received by a signal analyzer for
producing the power spectral density. The mechanical Q
factors were obtained by fitting the mechanical resonant
peaks in the measured power spectral density with a
Lorentzian line shape (see details in Supplementary
Information, Section S3).
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